تعیین مدل ارزیابی عملکرد مالی شرکت‌های بورس اوراق بهادار تهران بر مبنای داده‌کاوی

نوع مقاله: مقاله مستقل

نویسندگان

1 استادیار مدیریت صنعتی، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی

2 دانشیار مدیریت و حسابداری، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی

3 دانشجوی کارشناسی ارشد، مدیریت مالی، دانشگاه علامه طباطبائی

چکیده

تعیین عملکرد شرکت‌ها با استفاده از نسبت‌های مالی همواره جالب توجه بسیاری از محققان و پژوهشگران بوده است. شناسایی عوامل مالی که بیشترین تاثیر را بر عملکرد شرکت‌ها داشته یکی از مباحث مهم برای تصمیم گیرندگان است. در این پژوهش با به کارگیری استاندارد داده‌کاوی، 4 مدل درخت تصمیم کاشف تعاملات خودکار کای دو[1]، آماری موثر عاری از تعصب و سریع[2]، خوشه بندی و رگرسیون[3] و سی فایو[4]  به منظور ارزیابی عملکرد پیاده‌سازی و مدل‌ها با معیار‌های ارزیابی مقایسه شدند. همچنین نسبت‌های تاثیرگذار در ارزیابی مالی شرکت‌ها شناسایی شد. 673 شرکت بورس اوراق بهادار تهران بر اساس 30 نسبت بدست آمده از  صورت‌های مالی سال‌های 1393-1390 بررسی شده است. نتایج حاصل نشان می‌دهد در مقایسه 4 درخت تصمیم در روش‌های ارزیابی تخمین نمونه آزمایشی، اعتبار سنجی متقابل و شاخصه‌های ارزیابی درخت تصمیم کاشف تعاملات خودکار کای دو  دارای بیشترین صحت و دقت است. البته مدل‌های دیگر نیز از اطمینان بالایی (بالای 80 درصد) برخوردار هستند و می‌توان از تمامی آن‌ها استفاده کرد. همچنین در نتایج داده‌کاوی حاضر نسبت سود خالص به فروش، نسبت بار مالی وام و گردش مجموع دارایی‌ها در میان نسبت‌های مالی مورد بررسی  اهمیت بالاتری در پیش بینی عملکرد داشتند.




[1] CHAID (Chi-squared Automatic Interaction Detection)


[2] QUEST (Quick, Unbiased, Efficient Statistical Tree)


[3] Classification and Regression


[4] C5.0

کلیدواژه‌ها


عنوان مقاله [English]

Determining the model of financial performance of Tehran Stock Exchange companies based on data miningAbstract

نویسندگان [English]

  • Eman Raeisi Vanani 1
  • Ghasem Boulou 2
  • Shohreh Zarkesh 3
1 imanraeesi@atu.ac.ir
2 blue@atu.ac.ir
3 shohreh.zarkesh@gmail.com
چکیده [English]

Determining the performance of companies using financial ratios has always been an interesting attraction for many researchers. Identifying the financial factors that have the greatest impact on corporate performance is one of the important issues for decision makers. In this research, by employing data mining standards, 4 decision making trees including CHAID, QUEST, C&R and C5.0 have been implemented and compared with evaluation criteria .Also, effective financial ratios have been determined. For this purpose a sample consisting of 30 ratios in 673 listed firms in Tehran Stock Exchange between years 1390 to 1393 have been considered. The results show that CHAID has the most accurate and precision in comparison with 4 decision trees. Of course other models have high reliability (above 80 %) and can be used all of them. 3 variables including “Net Profit to Sales”, “Loans interest rate” and “Total Asset Turnover” had the highest significance in predicting performance.

کلیدواژه‌ها [English]

  • Financial performance
  • Evaluation Model
  • data mining
  • Decision tree
هاشمی، سید عباس؛ حسینی، سید محسن؛ برعندان، سجاد. (1391). مقایسه محتوای فزاینده اطلاعاتی نسبت‌های نقدی و تعهدی برای ارزیابی عملکرد مالی شرکت‌ها با رویکردی داده‌کاوی. پژوهش‌های حسابداری مالی، 4، 63-81. 

 

Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. New York: Chapman & Hall/CRC.

Delen, D., Kuzey, C., & Uyar, A. (2013). Measuring firm performance using financial ratios: A Decision tree approach. Expert System with Application, 40(10), 3970-3983.

Doolatabadi, H. R., Hoseini, S. M., & Tahmasebi, R. (2013). Using decision tree model and logistic regression to predict companies financial bankruptcy in Tehran stock exchanges. International Journal of Emerging Research in Management &Technology, 2(9), 7-16

Foroghi, D., & Monadjemi, A. (2011, June). Applying decision tree to predict bankruptcy. In Computer Science and Automation Engineering (CSAE), 2011 IEEE International Conference on (Vol. 4, pp. 165-169). IEEE.

Gorunescu, F. (2011). Data Mining: Concepts, models and techniques (Vol. 12). Springer Science & Business Media.

Hand, D. J., Mannila, H., & Smyth, P. (2001). Principles of data mining. MIT press.

Horrigan, J. O. (1965). Some empirical bases of financial ratio analysis. The Accounting Review, 40(3), 558-568.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of categorical data. Applied statistics, 119-127.

Karimi, T. & Sadeghi Moghadam, M. (2014). Rough Set and Grey Set Theory: principles, applications and software's. First edition. Tehran: Mehraban nashr. (In Persian)

Karami, G. R., & Talaeei, L. (2013). Predictability of stock returns using financial ratios in the companies listed in Tehran Stock Exchange. International Research Journal of Applied and Basic Sciences, 4(12), 4261-4273.

Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. European journal of operational research, 180(1), 1-28.

IBM, IBM SPSS Modeler 17 Modeling Nodes, 2015

Miner, G., Nisbet, R. & Elder, J., 2009. Handbook of Statistical Analysis and Data Mining Applications. 1 ed. s.l.: Academic Press.

Ross, S. A., Westerfield, R., & Jordan, B. D. (2008). Fundamentals of corporate finance. Tata McGraw-Hill Education.

Wang, H., Jiang, Y., & Wang, H. (2009, November). Stock return prediction based on Bagging-decision tree. In 2009 IEEE International Conference on Grey Systems and Intelligent Services (GSIS 2009) (pp. 1575-1580). IEEE.

Yu, G., & Wenjuan, G. (2010, May). Decision tree method in financial analysis of listed logistics companies. International conference on intelligent computation technology and automation.

Zhong, N., Dong, J., & Ohsuga, S., (2001). Using Rough Sets with Heuristics for Feature Selection. Journal of Intelligent Information Systems, 16 (3): 199–214.