عوامل مؤثر بر قصد ادامه استفاده مشتریانِ بانکداری اینترنتی(مورد مطالعه: بانک ملی ایران)

نوع مقاله: مقاله مستقل

نویسندگان

1 دکتری مدیریت فناوری اطلاعات، دانشگاه علامه طباطبائی

2 دانشیار، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی

3 استادیار، دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی

چکیده

باتوجه به سرمایه­گذاری­ فراوانی که در بانکداری اینترنتی انجام شده است، موفقیت نهایی بانکداری اینترنتی بیشتر منوط به استفاده مستمر و ادامه­دار مشتریان می­باشد تا پذیرش اولیه، اما تاکنون بیشتر تحقیقات انجام شده در حوزه پذیرش بانکداری اینترنتی بوده است و به حوزه پس از پذیرش توجهی نشده است. لذا برای پرکردن شکاف تحقیقاتی موجود، در این تحقیق با استفاده از مدل قصد ادامه استفاده، مدل موفقیت سیستمهای اطلاعاتی و سازه اعتماد مدلی جهت بررسی عوامل موثر بر قصد ادامه استفاده از خدمات بانکداری اینترنتی ارائه شده است. براساس پاسخ 443 کاربر، روش مدلسازی معادلات ساختاری جهت تایید مدل استفاده شد. نتایج تحقیق نشان داد که رضایت، اعتماد و فایده­مندی ادراک­شده از عوامل اصلی پیش­بینی قصد ادامه استفاده بانکداری اینترنتی می­باشند. اعتماد، فایده­مندی ادراک­شده و تایید انتظارات توسط کیفیت سیستم، کیفیت اطلاعات و کیفیت خدمات تعیین می­شوند. مدل پیشنهادی 6/66 درصد از واریانس قصد ادامه استفاده از بانکداری اینترنتی را توضیح می­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Factors influencing the continuance intention of customers to the usage of Internet Banking (Case: Bank Melli Iran)

نویسندگان [English]

  • Ali Nabavi 1
  • Mohammad Taghi Taghavi Fard 2
  • Payam Hanafi Zadeh 3
  • Mohammad Reza Taghva 2
چکیده [English]

Abstract: Due to abundant investments in Internet Banking (IB), it is argued that IB eventual success depends on its continued use of customers rather than their first-time utilization. While a great deal of existing studies have focused on initial customers’ decisions to adopt an IB, less attention has been paid to the post-adoption condition. To address this gap, this study proposes a model to investigate the factors influencing the prolonged intention of customers  usage of IB based on the incorporation of the information system (IS) continuous intention, IS success model and trust. We performed a survey of 443 IB experienced participants, and used the structural equation modeling approach to test the research model. The results indicate that satisfaction, trust and perceived usefulness are the main predictors of continuous  intention. It also shows that trust, perceived usefulness and confirmation are determined by system quality, information quality, and service quality. The proposed model explains 66.6% of the variance in Internet banking continuous intention.

کلیدواژه‌ها [English]

  • Key words: post-adoption
  • continuous intention
  • expectation-confirmation model
  • internet banking
  • structural equation modeling (SEM)
بانک مرکزی. (1394). نظامهای پرداخت، آمار و داده‌های عملکرد، آمار شاپرک. http://www.cbi.ir
AbuShanab, E., Pearson, J. M., & Setterstrom, A. J. (2010). Internet banking and customers' acceptance in Jordan: the unified model's perspective. Communications of the Association for Information Systems, 26(1), 23.
Ahn, T., Ryu, S., & Han, I. (2007). The impact of web quality and playfulness on user acceptance of online retailing. Information & management, 44(3), 263-275.
Al-Ajam, A. S., & Nor, K. M. (2013). Influencing factors on behavioral intention to adopt Internet banking service. World Applied Sciences Journal, 22(11), 1652-1656.
Al-Qeisi, K. I., & Al-Abdallah, G. M. (2013). Internet Banking Adoption in Jordan: A Behavioral Approach. International Journal of Marketing Studies, 5(6), p84.
Aladwani, A. M. (2001). Online banking: a field study of drivers, development challenges, and expectations. International Journal of Information Management, 21(3), 213-225.
Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 25(3), 351-370.
Boudreau, M.-C., Gefen, D., & Straub, D. W. (2001). Validation in information systems research: a state-of-the-art assessment. MIS quarterly, 1-16.
Celik, H. (2008). What determines Turkish customers' acceptance of internet banking? International Journal of Bank Marketing, 26(5), 353-370.
Chen, C.-W. D., & Cheng, C.-Y. J. (2009). Understanding consumer intention in online shopping: a respecification and validation of the DeLone and McLean model. Behaviour & Information Technology, 28(4), 335-345.
Chen, S.-C., & Li, S.-H. (2010). Consumer adoption of e-service: Integrating technology readiness with the theory of planned behavior. African Journal of Business Management, 4(16), 3556-3563.
Cheng, T., Lam, D. Y., & Yeung, A. C. (2006). Adoption of internet banking: an empirical study in Hong Kong. Decision Support Systems, 42(3), 1558-1572.
Chirani, E., Taleghani, M., & Rahmati, Y. (2011). Designing a model for explanation of the internet banking acceptance rate. African Journal of Business Management, 5(21), 8593-8600.
Clark, T. H., & Lee, H. G. (1998). Security First Network Bank: a case study of an Internet pioneer. Paper presented at the System Sciences, 1998., Proceedings of the Thirty-First Hawaii International Conference on.
ComScore Inc., (2012). 1 in 4 Internet Users Access Banking Sites Globally, in: comScore Data Mine, comScore, Inc.,
DeLone, W. H., & McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information systems research, 3(1), 60-95.
Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems, 19(4), 9-30.
Echchabi, A. (2011). Online banking prospects in Morocco: an extension of technology acceptance model. Journal of Internet Banking and Commerce, 16(3), 1-13.
Eriksson, K., Kerem, K., & Nilsson, D. (2005). Customer acceptance of internet banking in Estonia. International Journal of Bank Marketing, 23(2), 200-216.
Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega, 28(6), 725-737.
Gefen, D. (2004). What makes an ERP implementation relationship worthwhile: Linking trust mechanisms and ERP usefulness. Journal of Management Information Systems, 21(1), 263-288.
Gefen, D., Karahanna, E., & Straub, D. (2003). Potential and Repeat e-Consumers: The Role of and Trust vis-à-vis TAM. IEEE Transactions on engineering management, 50(3), 307-321.
Gefen, D., & Straub, D. (2005). A practical guide to factorial validity using PLS-Graph: Tutorial and annotated example. Communications of the association for information systems, 16(1), 5.
Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101-107.
Gerrard, P., & Barton Cunningham, J. (2003). The diffusion of Internet banking among Singapore consumers. International Journal of Bank Marketing, 21(1), 16-28.
Gounaris, S., Koritos, C., & Vassilikopoulou, K. (2010). Person–place congruency in the Internet Banking context. Journal of Business Research, 63(9), 943-949.
Hair, J. F., Anderson, R. E., Tatham, R. L., & William, C. (1998). Black (1998), Multivariate data analysis: Upper Saddle River, NJ: Prentice Hall.
Hanafizadeh, P., Keating, B. W., & Khedmatgozar, H. R. (2014). A systematic review of Internet banking adoption. Telematics and Informatics, 31(3), 492-510.
Hanafizadeh, P., & Khedmatgozar, H. R. (2012). The mediating role of the dimensions of the perceived risk in the effect of customers’ awareness on the adoption of Internet banking in Iran. Electronic Commerce Research, 12(2), 151-175.
Kim, H.-W., Xu, Y., & Koh, J. (2004). A comparison of online trust building factors between potential customers and repeat customers. Journal of the Association for Information Systems, 5(10), 13.
Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educ Psychol Meas.
Larsen, T. J., Sørebø, A. M., & Sørebø, Ø. (2009). The role of task-technology fit as users’ motivation to continue information system use. Computers in Human Behavior, 25(3), 778-784.
Lee, K. C., & Chung, N. (2009). Exploring Antecedents of Behavior Intention to Use Internet Banking in Korea: Adoption Perspective. International Journal of E-Adoption (IJEA), 1(3), 30-47.
Lee, Y., & Kwon, O. (2011). Intimacy, familiarity and continuance intention: An extended expectation–confirmation model in web-based services. Electronic Commerce research and applications, 10(3), 342-357.
Martins, C., Oliveira, T., & Popovič, A. (2014). Understanding the Internet banking adoption: A unified theory of acceptance and use of technology and perceived risk application. International Journal of Information Management, 34(1), 1-13.
Mauro C. Hernandez, J., & Afonso Mazzon, J. (2007). Adoption of internet banking: proposition and implementation of an integrated methodology approach. International Journal of Bank Marketing, 25(2), 72-88.
McKnight, D. H., Choudhury, V., & Kacmar, C. (2002). Developing and validating trust measures for e-commerce: an integrative typology. Information systems research, 13(3), 334-359.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 460-469.
Rotchanakitumnuai, S., & Speece, M. (2003). Barriers to internet banking adoption: a qualitative study among corporate customers in Thailand. International Journal of Bank Marketing, 21(6/7), 312-323.
Sadeghi, T., & Farokhian, S. (2011). Services quality model for online banking services by behavioral adoption theories and comparative study. African Journal of Business Management, 5(11), 4490-4499.
Saeed, K. A., & Abdinnour-Helm, S. (2008). Examining the effects of information system characteristics and perceived usefulness on post adoption usage of information systems. Information & management, 45(6), 376-386.
Shih, Y.-Y., & Fang, K. (2004). The use of a decomposed theory of planned behavior to study Internet banking in Taiwan. Internet Research, 14(3), 213-223.
Song, J., & Zahedi, F. (2007). Trust in health infomediaries. Decision Support Systems, 43(2), 390-407.
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society. Series B (Methodological), 111-147.
Susanto, A., Lee, H., Zo, H., & Ciganek, A. P. (2013). Factors Affecting Internet Banking Success: A Comparative Investigation between Indonesia and South Korea. Journal of Global Information Management (JGIM), 21(2), 72-95.
Tan, M., & Teo, T. S. (2000). Factors influencing the adoption of Internet banking. Journal of the AIS, 1(1es), 5.
Tang, J.-t. E., Tang, T.-I., & Chiang, C.-H. (2014). Blog learning: effects of users' usefulness and efficiency towards continuance intention. Behaviour & Information Technology, 33(1), 36-50.
Tenenhaus, M., Vinzi, V. E., Chatelin, Y.-M., & Lauro, C. (2005). PLS path modeling. Computational statistics & data analysis, 48(1), 159-205.
Teo, T. S., Srivastava, S. C., & Jiang, L. (2008). Trust and electronic government success: an empirical study. Journal of Management Information Systems, 25(3), 99-132.
Thong, J. Y., Hong, S.-J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
Tsai, H.-T., Chien, J.-L., & Tsai, M.-T. (2014). The influences of system usability and user satisfaction on continued Internet banking services usage intention: empirical evidence from Taiwan. Electronic Commerce Research, 1-33.
Vatanasombut, B., Igbaria, M., Stylianou, A. C., & Rodgers, W. (2008). Information systems continuance intention of web-based applications customers: The case of online banking. Information & Management, 45(7), 419-428.
Vinzi, V. E., Trinchera, L., & Amato, S. (2010). PLS path modeling: from foundations to recent developments and open issues for model assessment and improvement Handbook of partial least squares (pp. 47-82): Springer.
Xue, M., Hitt, L. M., & Chen, P.-y. (2011). Determinants and outcomes of internet banking adoption. Management science, 57(2), 291-307.
Yiu, C. S., Grant, K., & Edgar, D. (2007). Factors affecting the adoption of Internet Banking in Hong Kong—implications for the banking sector. International Journal of Information Management, 27(5), 336-351.
Zhou, Z., Fang, Y., Vogel, D. R., Jin, X.-L., & Zhang, X. (2012). Attracted to or locked in? Predicting continuance intention in social virtual world services. Journal of Management Information Systems, 29(1), 273-306.