بررسی عوامل مؤثر در قصد استفاده مستمر دانشجویان از سیستم مدیریت یادگیری

نویسندگان

1 استادیار دانشکده فناوری اطلاعات، موسسه آموزش عالی مهر البرز

2 فارغ التحصیل کارشناسی ارشد دانشکده مدیریت و حسابداری، دانشگاه علامه طباطبائی

3 فارغ التحصیل کارشناسی ارشد دانشکده فناوری اطلاعات، موسسه آموزش عالی مهر البرز

4 فارغ التحصیل کارشناسی ارشد دانشکده مدیریت و حسابداری دانشگاه علامه طباطبائی

چکیده

در دهه‌های اخیر، دانشگاه‌ها و مؤسسات آموزش عالی به طور گسترده‌ای به استفاده از سیستم‌های مدیریت یادگیری روی آورده‌اند. برخلاف نقش مهم سیستم مدیریت یادگیری در محیط‌های آموزشی، اکثر تحقیقات بر روی پذیرش اولیه این فناوری تمرکز نموده و تلاش اندکی در خصوص بررسی عوامل مؤثر بر قصد استفاده مستمر از سیستم مدیریت یادگیری انجام شده است. از این‌رو، هدف مطالعه حاضر، پیشنهاد یک مدل یکپارچه، بر مبنای تئوری انتظار-تائید، مدل پذیرش فناوری و لذت درک شده (ارزش مربوط به لذت و خوشی) تعریف شده است. مدل ارائه شده با استفاده از داده‌های آماری جمع‌آوری شده از 99 دانشجوی مقطع کارشناسی ارشد موسسه آموزش عالی مهر البرز در تهران با استفاده از روش حداقل مربعات جزئی مورد آزمون قرار گرفته است. یافته‌های حاصل از تحقیق نشان می‌دهد که سودمندی درک شده تاثیرگذارترین عامل بر روی قصد استفاده مستمر دانشجویان از سیستم مدیریت یادگیری است. همچنین، نتایج به دست آمده حاکی از آن است که نگرش دانشجویان نسبت به سیستم مدیریت یادگیری و سطح رضایت آن‌ها تأثیر معنی داری بر روی قصد استفاده مستمر ندارد.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of business process management on ERP system benefits

نویسندگان [English]

  • Ahad Zare Ravasan 1
  • Amir Ashrafi 2
  • Mahdi Rabii Savoji 3
  • Masoumeh Amani 4
چکیده [English]

Implementing enterprise resource planning (ERP) projects needs relatively high amount of investment costs. Due to the high failure rates, these projects face real challenges and risks. Studies reveal that rapid implementation aids of these projects has not been evaluated, consequently lots of expenses have been imposed to organizations due to the failures. On the other hand the failures have been caused to increasing in market risk and also managers and investors pessimism about the projects. This study has evaluated the effects of business process reengineering (BPR) process on ERP systems implementation goals and their anticipated benefits. The statistical review in this study based on information extracted from organizations that had been implemented the ERP systems, reveals that there is a positive relationship between implementing BPR process and gaining more benefits from ERP systems.

کلیدواژه‌ها [English]

  • Enterprise Resource Planning (ERP)
  • Business process Reengineering (BPR)
  • ERP benefits
  • BPR process assessment
  1. حنفی‌زاده پیام، زارع رواسان احد. (1391). روش تحلیل ساختارهای چندسطحی با استفاده از نرم‌افزار SmartPLS. چاپ اول. نشر ترمه.
    1. Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
    2. Al-Debei, M. M., Al-Lozi, E., & Papazafeiropoulou, A. (2013). Why people keep coming back to Facebook: Explaining and predicting continuance participation from an extended theory of planned behaviour perspective. Decision Support Systems, 55(1), 43-54.
    3. Al-Somali, S. A., Gholami, R., & Clegg, B. (2009). An investigation into the acceptance of online banking in Saudi Arabia. Technovation, 29(2), 130-141.
    4. Anderson, E. W., & Sullivan, M. W. (1993). The antecedents and consequences of customer satisfaction for firms. Marketing science, 12(2), 125-143.
    5. Bhattacherjee, A. (2001). Understanding information systems continuance: an expectation-confirmation model. MIS quarterly, 351-370.
    6. Bhattacherjee, A., & Lin, C.-P. (2015). A unified model of IT continuance: three complementary perspectives and crossover effects. European Journal of Information Systems, 24(4), 364-373.
    7. Bhattacherjee, A., Perols, J., & Sanford, C. (2008). Information technology continuance: A theoretic extension and empirical test. Journal of Computer Information Systems, 49(1), 17-26.
    8. Bøe, T., Gulbrandsen, B., & Sørebø, Ø. (2015). How to stimulate the continued use of ICT in higher education: Integrating information systems continuance theory and agency theory. Computers in Human Behavior, 50, 375-384.
10.  Brown, S. A., Venkatesh, V., & Goyal, S. (2012). Expectation confirmation in technology use. Information Systems Research, 23(2), 474-487.
11.  Chang, I.-C., Liu, C.-C., & Chen, K. (2014). The effects of hedonic/utilitarian expectations and social influence on continuance intention to play online games. Internet Research, 24(1), 21-45.
12.  Childers, T. L., Carr, C. L., Peck, J., & Carson, S. (2002). Hedonic and utilitarian motivations for online retail shopping behavior. Journal of retailing, 77(4), 511-535.
13.  Chin, W. (1998). Issues and opinion on structural equation modeling. Management Information Systems Quarterly, 22(1), 7-16.
14.  Cigdem, H., & Topcu, A. (2015). Predictors of instructors’ behavioral intention to use learning management system: A Turkish vocational college example. Computers in Human Behavior, 52, 22-28.
15.  Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
16.  Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace1. Journal of applied social psychology, 22(14), 1111-1132.
17.  Eveleth, D. M., Baker-Eveleth, L. J., & Stone, R. W. (2015). Potential applicants’ expectation-confirmation and intentions. Computers in Human Behavior, 44, 183-190.
18.  Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research: Addison-Wesley.
19.  Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
20.  Hair Jr, J., Anderson, R., Tatham, R., & Black, W. (1995). Multivariate data analysis: with readings: Prentice-Hall, Inc. Upper Saddle River, NJ, USA.
21.  Hassanzadeh, A., Kanaani, F., & Elahi, S. (2012). A model for measuring e-learning systems success in universities. Expert Systems with Applications, 39(12), 10959-10966.
22.  Hsu, M.-H., Ju, T. L., Yen, C.-H., & Chang, C.-M. (2007). Knowledge sharing behavior in virtual communities: The relationship between trust, self-efficacy, and outcome expectations. International Journal of Human-Computer Studies, 65(2), 153-169.
23.  Islam, A. (2012). The Role of Perceived System Quality as Educators’ Motivation to Continue E-learning System Use. AIS Transactions on Human-Computer Interaction, 4(1), 25-43.
24.  Kim, B. (2010). An empirical investigation of mobile data service continuance: Incorporating the theory of planned behavior into the expectation–confirmation model. Expert Systems with Applications, 37(10), 7033-7039.
25.  Kwon, O., & Wen, Y. (2010). An empirical study of the factors affecting social network service use. Computers in Human Behavior, 26(2), 254-263.
26.  Lee, M.-C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & Education, 54(2), 506-516.
27.  Lee, Y., & Kozar, K. A. (2012). Understanding of website usability: Specifying and measuring constructs and their relationships. Decision Support Systems, 52(2), 450-463.
28.  Liao, C., Chen, J.-L., & Yen, D. C. (2007). Theory of planning behavior (TPB) and customer satisfaction in the continued use of e-service: An integrated model. Computers in Human Behavior, 23(6), 2804-2822.
29.  Lin, C. S., Wu, S., & Tsai, R. J. (2005). Integrating perceived playfulness into expectation-confirmation model for web portal context. Information & management, 42(5), 683-693.
30.  Marcoulides, G. A., & Saunders, C. (2006). Editor's comments: PLS: a silver bullet? Mis Quarterly, iii-ix.
31.  McGill, T. J., & Klobas, J. E. (2009). A task–technology fit view of learning management system impact. Computers & Education, 52(2), 496-508.
32.  Mohammadi, H. (2015). Social and individual antecedents of m-learning adoption in Iran. Computers in Human Behavior, 49, 191-207.
33.  Mouakket, S. (2015). Factors influencing continuance intention to use social network sites: The Facebook case. Computers in Human Behavior, 53, 102-110.
34.  Ngai, E. W., Poon, J., & Chan, Y. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & Education, 48(2), 250-267.
35.  Nunnally, J. (1978). Psychometric theory. NY: McGraw-Hill.
36.  Oghuma, A. P., Libaque-Saenz, C. F., Wong, S. F., & Chang, Y. (2016). An expectation-confirmation model of continuance intention to use mobile instant messaging. Telematics and Informatics, 33(1), 34-47.
37.  Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 460-469.
38.  Ozkan, S., & Koseler, R. (2009). Multi-dimensional students’ evaluation of e-learning systems in the higher education context: An empirical investigation. Computers & Education, 53(4), 1285-1296.
39.  Ratten, V. (2015). Continuance use intention of cloud computing: Innovativeness and creativity perspectives. Journal of Business Research.
40.  Ringle, C. M., Wende, S., & Will, A. (2005). SmartPLS 2.0 (M3) beta: Hamburg. http://www.smartpls.de.
41.  Sabi, H. M., Uzoka, F.-M. E., Langmia, K., & Njeh, F. N. (2016). Conceptualizing a model for adoption of cloud computing in education. International Journal of Information Management, 36(2), 183-191.
42.  Siamagka, N.-T., Christodoulides, G., Michaelidou, N., & Valvi, A. (2015). Determinants of social media adoption by B2B organizations. Industrial Marketing Management, 51, 89-99.
43.  Stone, R. W., & Baker-Eveleth, L. (2013). Students’ expectation, confirmation, and continuance intention to use electronic textbooks. Computers in Human Behavior, 29(3), 984-990.
44.  Thong, J. Y., Hong, S.-J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
45.  Van der Heijden, H. (2003). Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Information & management, 40(6), 541-549.
46.  Van Raaij, E. M., & Schepers, J. J. (2008). The acceptance and use of a virtual learning environment in China. Computers & Education, 50(3), 838-852.
47.  Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
48.  Wang, W.-T., & Wang, C.-C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53(3), 761-774.
49.  Wang, Y.-S., Wang, H.-Y., & Shee, D. Y. (2007). Measuring e-learning systems success in an organizational context: Scale development and validation. Computers in Human Behavior, 23(4), 1792-1808.
50.  Wen, C., Prybutok, V. R., & Xu, C. (2011). An integrated model for customer online repurchase intention. Journal of Computer Information Systems, 52(1), 14-23.
51.  Yoon, C., & Rolland, E. (2015). Understanding continuance use in social networking services. Journal of Computer Information Systems, 55(2), 1-8.
52.  Zhang, X., de Pablos, P. O., Wang, X., Wang, W., Sun, Y., & She, J. (2014). Understanding the users’ continuous adoption of 3D social virtual world in China: A comparative case study. Computers in Human Behavior, 35, 578-585.